Dear Students,

Attached is a summer practice packet for math. This packet contains topics and math problems for you to work on during the summer. It is recommended that you begin work on the packet by the beginning of July and complete one or two topics per day. You should work with your parents to set up a schedule for the summer that includes some time for math practice each day. I suggest that you complete all of your work in a notebook so you can keep track of everything you have done.

If you have difficulty with a topic, look for online videos through Khan Academy or Math Antics that might help you. You can also reach out to family members or friends for assistance if needed. The topics covered in the packet are ones that you have completed in previous years. There should not be anything in the packet that you have not been taught in a previous grade. The purpose of the packet is to practice topics that are necessary for you to know to be successful at the next grade level.

By August 1st the answers to all of the problems in the packet will be posted on Mrs. McCarron's web page. You should check your work on the completed topics and rework any problems you have not completed correctly.

Have a happy and safe summer. Please feel free to have your parents reach out to me if you have any questions.

Blessings,
Mrs. McCarron
\qquad Class \qquad Date \qquad

Understanding Whole Numbers

Millions Period			Thousands Period			Ones Period		
$\begin{array}{\|l} \hline \text { 욤 } \\ \text { d누 } \\ \text { 로 } \end{array}$	$\stackrel{\oplus}{\underset{\sim}{0}}$	$\begin{aligned} & \text { \& } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { 융 } \\ & \text { ㅇㄴ } \\ & \text { 릎 } \end{aligned}$	$\begin{aligned} & \text { 』 } \\ & \stackrel{\rightharpoonup}{\mathbf{0}} \end{aligned}$	$\begin{aligned} & \text { y } \\ & \hline \mathbf{0} \end{aligned}$		$\stackrel{\square}{\text { ¢ }}$	-
		4	2	0	1	5	7	8

4 million 201 thousand 578

- Standard form: 4,201,578
- To find the value of a digit, multiply the digit by its place value.

4 stands for $4 \times 1,000,000$, or $4,000,000$

- Expanded form:
$4,201,578=4,000,000+200,000+1,000+500+70+8$

Write each number in standard form.

1. six thousand one hundred four
2. sixty thousand one hundred twelve
3. seventeen thousandths
4. eight thousand two hundred ninety

Use <or > to complete each statement.
9. 523567
10. 1,292 \square 1,192
11. 47 \square 45
12. 9,120 \square 912
13. 53,01053,100
14. 4,293 \square 4,239
15. 783 \square 738
16. 4,121 \square 4,212
17. $35,423 \square$ 34,587
18. 241,796 \square 242,976
19. 182 \square 1,820
20. 8,751 \square 8,715

Write in order from least to greatest.
21. $782,785,783,790$
22. 1,$240 ; 1,420 ; 1,346 ; 1,364$
23. 6,$214 ; 6,124 ; 6,421 ; 6,241$
24. 92,$385 ; 92,835 ; 93,582 ; 93,258$
25. 45,$923 ; 54,923 ; 45,932 ; 54,932$
26. 1,$111 ; 1,011 ; 1,101 ; 1,110$
\qquad
\qquad Date \qquad

Use $>,<$, or $=$ to show how 4.092 and 4.089 compare.
(1) Write the numbers on grid paper with the decimal points lined up.
(2) Compare digits in the greatest place. Move to the right until you find digits that are not the same.

4 ones $=4$ ones
0 tenths $=0$ tenths

9 hundreths >8 hundreths
So, $4.092>4.089$.
To order numbers from least to greatest:
(1) Write the numbers on grid paper (decimal points lined up) and compare.
(2) Then arrange the numbers from least to greatest.

$$
4.089,4.09,4.092
$$

4	\cdot	0	9	2
4	\cdot	0	8	9
4	\cdot	0	9	

Use $<,=$, or $>$ to complete each statement.

1. $0.01 \square 0.15$
2. 0.25 \square 0.21
3. 0.10 \square 0.12
4. 0.35
 0.34
5. 0.30 0.26
6. $0.1 \square 0.4$
7. 34.4 34.40
8. $0.207 \square 0.27$
9. 0.08 0.40
10. $0.32 \square 0.309$
11. 6.126.099
12. 2.36 \square 2.036
13. 0.05 \square 0.15
14. 0.990 \square 0.99
15. $1.19 \square 1.91$

Use place value to order the decimals from least to greatest.
16. $3.46,3.64,3.59$
\qquad
19. $10.02,10.2,1.02$
\qquad
17. $22.97,21.79,22.86$
20. $1.09,1.9,1.1$
\qquad

Order each set of numbers on a number line.
22. $0.67,0.7,0.6$
23. $0.03,0.29,0.019$
24. $8.36,8.01,8.1$
\qquad
\qquad
\qquad

Review 5

Adding and Subtracting Decimals

Add $3.25+12.6+18.93$.

Then follow these steps.
(1) Line up the decimal points.
Write in any needed zeros.
(2) Add as you would add whole numbers. Regroup when needed.

$$
\begin{array}{r}
3.25 \\
12.60 \\
+18.93 \\
\hline
\end{array}
$$

(3) Place the decimal point.
3.25
12.60
$+18.93$
$34.78 \longleftarrow$ Compare to your estimate.

To subtract decimals, follow similar steps. Work from right to left and regroup when needed. Place the decimal point to complete the subtraction.

First estimate and then find each sum.

1. $0.9+6.7$
Estimate \qquad
2. $3.1+9.4$
Estimate \qquad
3. $4.88+8.19$
Estimate \qquad
Sum \qquad Sum \qquad Sum \qquad

Use mental math to find each sum.

4. $14.05+9.75$
5. $6+0.22+0.78$
6. $9.104+5.01+7.99$

First estimate and then find each difference.
7. $8.5-4.2$
Estimate \qquad
Difference \qquad
8. $7.2-3.05$
Estimate \qquad
Difference \qquad
10. $6.347-2.986$
11. $14.2-9.86$
14. $16.1-10.88$
9. $5.07-2.8$

Estimate \qquad
Difference \qquad
12. $13.45-5.001$
\qquad
15. $1.79-0.879$
\qquad
\qquad
\qquad

Example 1: Multiply 10×0.65.
There is one zero in 10 so move the decimal point one place to the right.
$10 \times \underset{v}{0.65}=6.5$
Check your answer using a paper and pencil.
$0.65 \longleftarrow 2$ decimal places
$\times 10 \quad 0$ decimal places
$6.50 \longleftarrow \quad 2$ decimal places
$6.50=6.5$

Example 2: Divide $15.5 \div 100$.
There are two zeros in 100 so move the decimal point two places to the left.
$w .5 \div 100=0.155$
Check your answer using a paper and pencil.

$$
\begin{gathered}
0.155 \\
1 0 0 \longdiv { 1 5 . 5 } \\
-100 \\
\hline 550 \\
-500 \\
\hline 500 \\
-500 \\
\hline
\end{gathered}
$$

Use mental math to find each product.

1. 2.7×10
2. $2.5(10)$
3. $100(0.21)$
4. 0.77×100
5. $10 \times 0.2 \times 1$
6. $5 \times 0.2 \times 100$
7. 2.64×100
8. $7.5 \cdot 1,000$
9. $0.5 \times 2 \times 20$

Use mental math to find each quotient.

$$
\text { 10. } 0.4 \div 10
$$

11. $2.3 \div 100$
12. $7 \div 100$
13. $52.3 \div 10$
14. $3 \div 1,000$
15. $41 \div 100$

Use <, =, or > to complete each statement.
16. $2.2 \times 10 \square 2.2(10)(0.1)$
18. $60 \div 100$ \square $600 \div 10$
20. $0.22 \div 10$ \square $0.22 \div 0.1$
22. $5.5 \times 2 \times 10$ \square 5.5×100
17. $1.1 \div 10$ \square $110 \div 100$
19. $5 \times 0.3 \times 2$$10 \times 0.3$
21. $0.004 \times 100 \square 1$ $10 \times 10 \times 0.004$
23. $(2 \times 5) 0.14$ \square 0.14 (10)
\qquad Class \qquad Date \qquad

These terms are used to describe mathematical operations．

Addition	Subtraction	Multiplication	Division
sum more than increased by total added to	difference less than fewer than decreased by	product times multiplied by	quotient of divided by

You can use the terms above to write algebraic expressions for word phrases．

Word Phrase
the sum of m and 17
the difference of x and 12
3 times w the quotient of q and $6 \quad \longrightarrow \quad q \div 6$

Write an expression to describe the relationship of the data in each table．
1.

n	匈
2	10
4	12
6	14

2.

n	围
1	3
2	6
3	9

3.

n	睲
8	6
10	8
12	10

\qquad
\qquad

Write an expression for each word phrase．

4． 6 increased by y

6．the difference of h and 3

8．the difference of s and 8

10． 5 more than n
5．the quotient of 8 and e
\qquad
7． 4 times w

9．r divided by 2

11．the product of 6 and m
\qquad
\qquad
\qquad

Addition Equations

There are 4 more than needed to fill the x box.

$$
x+4=11
$$

To solve this equation, find the value of x that makes the scales balance.

Since 4 is added to x, subtract 4 from both sides.

$$
\begin{aligned}
x+4 & =11 \\
x+4-4 & =11-4 \\
x & =7
\end{aligned}
$$

The solution to the equation is $x=7$.

Subtraction Equations

$$
r-3=9
$$

To solve this equation, find the value of r.
Since 3 is subtracted from r, add 3 to both sides.

$$
\begin{gathered}
r-3=9 \\
r-3+3=9+3 \\
r=12
\end{gathered}
$$

The solution to the equation is $r=12$.

Solve each equation.

1.

$$
a+15=31
$$

$a+15-$ \qquad $=31$ - \qquad

$$
a=
$$

2.

$5=x-20$
$5+$ \qquad $=x-20+$ \qquad
\qquad $=x$
3. $19+t=51$
4. $p-11=12$
5. $60=n+30$
6. $71=b-29$
7. $86+m=107$
8. $w+349=761$
9. $50-y=30$
10. $d-125=75$
\qquad
\qquad
11. A car dealer purchased a car for $\$ 2,000$ and then sold it for $\$ 3,200$. Write and solve an equation to find the profit.
\qquad
\qquad Date \qquad

What value of w makes the scales balance?
$4 w=12 \longrightarrow$ To solve the multiplication sentence, use division.

$$
4 w=12
$$

$$
4 w \div 4=12 \div 4 \longleftarrow \text { Divide both sides by } 4 .
$$

$$
w=3
$$

The solution is $w=3$.
To solve a division sentence, use multiplication.

$$
\begin{aligned}
y \div 3 & =7 \\
y \div 3 \times 3 & =7 \times 3 \longleftarrow \text { Multiply both sides by } 3 . \\
y & =21
\end{aligned}
$$

The solution is $y=21$.

State whether the number given is a solution to the equation.

1. $3 g=36 ; g=12$
2. $t \div 8=2 ; t=4$
3. $h \div 7=21 ; h=3$
4. $18=3 m ; m=6$
\qquad

Solve each equation.
7. $\quad 12=4 y$
$12 \div$ \qquad $=4 y \div$ \qquad
\qquad $=y$
5. $6 a=18 ; a=3$
6. $36=r \div 9 ; r=4$
8.

$$
n \div 9=4
$$

$$
n \div 9 \times \ldots=4 \times
$$

$$
n=
$$

9. $23 n=115$
10. $z \div 9=9$
11. $48=12 h$
12. $10 w=150$
13. $34=t \div 14$
14. $105=21 t$
15. $64=e \div 9$
16. $8 v=32$
17. $22=t \div 4$
18. $3 s=66$
19. $21=b \div 2$
20. $15 n=45$
\qquad
\qquad

An exponent tells how many times a number is used as a factor.
$3 \times 3 \times 3 \times 3$ shows the number 3 is used as a factor 4 times.
$3 \times 3 \times 3 \times 3$ can be written 3^{4}.
In $3^{4}, 3$ is the base and 4 is the exponent.
Read 3^{4} as "three to the fourth power."

- To simplify a power, first write it as a product.

$$
2^{5}=2 \times 2 \times 2 \times 2 \times 2=32
$$

- When you simplify expressions with exponents, do all operations inside parentheses first. Then simplify the powers.
Example: $30-(2+3)^{2}=30-5^{2}$

$$
\begin{aligned}
& =30-25 \\
& =5
\end{aligned}
$$

Name the base and the exponent.

1. 3^{6}
base \qquad exponent \qquad
2. 6^{2}
base \qquad
exponent \qquad
3. 8^{4}
base \qquad
exponent \qquad

Write each expression using an exponent. Name the base and the exponent.
4. $9 \times 9 \times 9$
5. $6 \times 6 \times 6 \times 6$
6. $1 \times 1 \times 1 \times 1 \times 1$

Simplify each expression.

7. 6^{2}
\qquad
8. 3^{5}
9. 10^{4}
10. $4^{2}+5^{2}$
\qquad
11. $2 \times 6-2^{3}$
12. $6^{2}+4^{2}$
13. $5+5^{2}-2$
14. $24 \div 4+2^{4}$
15. $9+\left(40 \div 2^{3}\right)$
16. $\left(4^{2}+4\right) \div 5$
17. $10 \times\left(30-5^{2}\right)$
18. $12+18 \div 3^{2}$
\qquad Class \qquad Date \qquad

Review 19

The Distributive Property allows you to break numbers apart to make mental math easier.

Multiply 9×24 mentally.
Think: $9 \times 24=9 \times(20+4)$

$$
\begin{aligned}
& =(9 \times 20)+(9 \times 4) \\
& =180+36 \\
& =216
\end{aligned}
$$

The Distributive Property may also help you to simplify an expression.

$$
\begin{aligned}
(8 \times 7)+(8 \times 3) & =8 \times(7+3) \\
& =8 \times 10 \\
& =80
\end{aligned}
$$

Use the Distributive Property to find the missing numbers in the equation.

1. $(\square \times 4)+(3 \times \square)=3 \times(4+8)$
2. $(6 \times \square)-(\square \times 3)=6 \times(5-3)$
3. $4 \times(\square-3)=(\square \times 9)-(4 \times \square)$
4. $(\square \times 7)-(6 \times \square)=6 \times(7-5)$
5. $(4 \times 5)+(\square \times 7)=4 \times(\square+7)$
6. $\square \times(12+8)=(6 \times \square)+(\square \times 8)$

Use the Distributive Property to rewrite and simplify each expression.
7. $(2 \times 7)+(2 \times 5)$
8. $8 \times(60-5)$
9. $(7 \times 8)-(7 \times 6)$
10. $(12 \times 3)+(12 \times 4)$

Use the Distributive Property to simplify each expression.
11. 3×27 \qquad
12. 5×43 \qquad 13. 8×59 \qquad
14. 7×61 \qquad
16. 6×53 \qquad
$.6 \times 53-$
17. 8×48 \qquad 18. 4×91 \qquad 19. 9×38 \qquad
15. 5×84 \qquad
\qquad
\qquad
\qquad
\qquad
\qquad Class \qquad Date \qquad

Review 20
A number is divisible by a second number if the second number divides into the first with no remainder. Here are some rules.

Last Digit of a Number	The Number Is Divisible by	Examples
any	1	any number
$0,2,4,6,8$	2	$10 ; 24 ; 32 ; 54 ; 106 ; 138$
0,5	5	$10 ; 25 ; 70 ; 915 ; 1,250$
0	10	$10 ; 20 ; 90 ; 500 ; 4,300$

The Sum of the Digits	The Number Is Divisible by	Examples		
is divisible by 3	3	$843 \rightarrow$$8+4+3=15$ and $15 \div 3=5$	281 R0 0 843	
is divisible by 9	9	$2,898 \rightarrow$$2+8+9+8=27$ and $27 \div 9=3$	322 R 0 2,898	

Circle the numbers that are divisible by the number at the left.

1.	2	8	15	26	42	97	105	218
2.	5	14	10	25	18	975	1,005	2,340
3.	10	100	75	23	60	99	250	655
4.	3	51	75	12	82	93	153	274
5.	9	27	32	36	108	126	245	387

Use mental math to determine if the first number is divisible by the second.
6. $185 ; 5$ \qquad 7. 76,$870 ; 10$ \qquad 8. $461 ; 1$ \qquad
9. $456 ; 3$ \qquad 10. 35,$994 ; 2$ \qquad 11. 6,$791 ; 3$ \qquad
12. 12,$866 ; 9$ \qquad 13. 151,$002 ; 9$ \qquad 14. 55,340; 5 \qquad
15. 6,$888 ; 2$ \qquad 16. 31,$067 ; 5$ \qquad 17. 901,$204 ; 3$ \qquad
18. 2,$232 ; 3$ \qquad
19. 45,$812 ; 9$ \qquad
20. 3,$090 ; 10$ \qquad
21. $312 ; 9$ \qquad 22. 1,$933 ; 3$ \qquad 23. 28,$889 ; 2$ \qquad

Test each number for being divisible by $\mathbf{2 , 5}$, or 10 . Some numbers may be divisible by more than one number.
24. 800 \qquad 25. 65 \qquad 26. 1,010 \qquad
\qquad
\qquad
\qquad

You can find the greatest common factor (GCF) of 12 and 18 using a division ladder, factor trees, or by listing the factors. Two of these methods are shown.
(1) List the factors of 12 and 18.

$$
12: 1,2,3,4,6,12
$$

18: $1,2,3,6,9,18$
(2) Find the common factors.

12: (1),(2)(3), 4,(6), 12
18: (1),(2),(3),(6), 9,18
The common factors are $1,2,3$, and 6 .
(3) Name the greatest common factor: 6 .
(1) Draw factor trees.

(2) Write each prime factorization. Identify common factors.

$$
\begin{aligned}
& 12:(2) \times 2 \times(3) \\
& 18:(2) \times(3) \times 3
\end{aligned}
$$

(3) Multiply the common factors. $2 \times 3=6$. The GCF of 12 and 18 is 6.

List the factors to find the GCF of each set of numbers.

1. 10 :

15: \qquad
2. 14 :

21: \qquad
GCF: \qquad
GCF: \qquad
4. 12 : \qquad 5. $15:$ \qquad
25: \qquad
GCF: \qquad
3. 9 :

21: \qquad
GCF: \qquad
6. 15 :

18: \qquad
GCF: \qquad

30:
GCF: \qquad

Find the GCF of each set of numbers.
9. 21,60 \qquad 10. 15,45 \qquad 11. 32,40 \qquad
12. 54,60 \qquad 13. 20,50 \qquad 14. 21,63 \qquad
15. 36,40 \qquad
16. 48,72 \qquad
\qquad
\qquad Date \qquad

Review 23

Equivalent fractions are fractions that name the same amount.

To find equivalent fractions, multiply or divide the numerator and denominator by the same number.

So, $\frac{2}{5}=\frac{4}{10}$.

To write a fraction in simplest form, divide the numerator and denominator by their greatest common factor.

Example: Write $\frac{8}{12}$ in simplest form.
(1) Find the greatest common factor.

$$
\begin{aligned}
& 8: 1,2,4,8 \\
& 12: 1,2,3,4,6,12
\end{aligned}
$$

The GCF is 4 .
(2) Divide the numerator and denominator by the GCF.

$\frac{8}{12}$ in simplest form is $\frac{2}{3}$.

Write two fractions equivalent to each fraction.

1. $\frac{5}{6}$ \qquad
2. $\frac{3}{7}$ \qquad
3. $\frac{7}{8}$ \qquad
4. $\frac{3}{11}$
5. $\frac{3}{6}$
6. $\frac{1}{5}$ \qquad

State whether each fraction is in simplest form. If it is not, write it in simplest form.
7. $\frac{12}{15}$ \qquad
8. $\frac{8}{15}$ \qquad
11. $\frac{14}{30}$
9. $\frac{9}{21}$ \qquad
10. $\frac{15}{22}$ \qquad 12. $\frac{25}{70}$ \qquad

Write each fraction in simplest form.
13. $\frac{12}{24}$ \qquad 14. $\frac{10}{200}$ \qquad 15. $\frac{56}{64}$ \qquad
16. $\frac{3}{9}$ \qquad
17. $\frac{130}{170}$ \qquad
18. $\frac{12}{16}$ \qquad
19. $\frac{7}{49}$
20. $\frac{22}{33}$
21. $\frac{30}{225}$ \qquad
22. There are 420 girls out of 1,980 people attending a state fair. In simplest form, what fraction of the people attending are girls?
\qquad
\qquad Date \qquad

To write a mixed number as an improper fraction:
(1) Multiply the whole number by (2) (3) the denominator.
(2) Add this product to the numerator.
(3) Write this sum over the denominator.

To write an improper fraction as a mixed number:
(1) Divide the $\frac{20}{8}=2$ remainder 4 numerator by the denominator.
(2) Write the $\quad=2 \frac{4}{8}$ remainder over the denominator.
(3) Simplify, if possible.

$$
\frac{20}{8}=2 \frac{1}{2}
$$

Write each mixed number as an improper fraction.

1. $2 \frac{2}{7}$ \qquad
2. $5 \frac{3}{4}$ \qquad
3. $6 \frac{1}{2}$ \qquad
4. $6 \frac{5}{8}$ \qquad
5. $3 \frac{4}{10}$ \qquad
6. $4 \frac{3}{5}$ \qquad
7. $9 \frac{1}{3}$ \qquad
8. $4 \frac{4}{5}$ \qquad
9. $1 \frac{7}{8}$ \qquad
10. $3 \frac{3}{8}$ \qquad
11. $2 \frac{3}{7}$ \qquad
12. $8 \frac{1}{6}$ \qquad

On a separate sheet of paper, draw a model of a 4-inch ruler marked off in eighths. Find and label each measurement on your ruler.
13. $3 \frac{5}{8}$
14. $2 \frac{6}{8}$
15. $3 \frac{1}{2}$
16. $1 \frac{3}{4}$
17. $2 \frac{1}{2}$
18. $3 \frac{1}{4}$

Write each improper fraction as a mixed number in simplest form.
19. $\frac{9}{8}$ \qquad 20. $\frac{7}{2}$ \qquad 21. $\frac{12}{5}$ \qquad
22. $\frac{8}{3}$ \qquad
23. $\frac{14}{8}$ \qquad
24. $\frac{6}{5}$ \qquad
25. $\frac{20}{3}$ \qquad
26. $\frac{17}{5}$ \qquad
27. $\frac{18}{4}$
\qquad
28. $\frac{9}{5}$ \qquad
29. $\frac{29}{8}$ \qquad
30. $\frac{24}{9}$
\qquad Class \qquad Date \qquad
Review 25
Find the least common multiple ($L C M$) of 8 and 12.
(1) Begin listing multiples of each number.
$8: 8,16,24,32,40$
$12: 12,24$
(2) Continue the lists until you find the first multiple that is common to both lists. That is the LCM.

The least common multiple of 8 and 12 is 24 .

List multiples to find the LCM of each pair of numbers.

1. $4:$ \qquad
2. 6 : \qquad

5: \qquad 7: \qquad
LCM: \qquad LCM: \qquad
3. $9:$ \qquad 4. 10 : \qquad
15: \qquad 25: \qquad
LCM: \qquad LCM: \qquad
5. $8:$ \qquad 6. 8 : \qquad
24: \qquad 12: \qquad
LCM: \qquad LCM: \qquad
7. 4 : \qquad 8. 15 : \qquad
25: \qquad
LCM: \qquad
9. 15 : \qquad 10. 4 : \qquad
20: \qquad
LCM: \qquad
9: \qquad
LCM: \qquad
Use prime factorization to find the LCM of each set of numbers.
\qquad 12. 6,8
13. 18,24
14. 40,50
15. 42,49
16. 6,12
\qquad
\qquad
\qquad

To compare and order fractions, use the least common denominator ($L C D$).
The LCD is the least common multiple (LCM) of the original denominators.

Compare Fractions

Example 1: Compare $\frac{3}{4}$ and $\frac{7}{10}$.
(1) Find the LCD of the denominators 4 and 10:

$$
\begin{aligned}
4 & =2 \times 2 \\
10 & =2 \times 5 \\
\mathrm{LCD} & =2 \times 2 \times 5=20
\end{aligned}
$$

(2) Write equivalent fractions:

(3) Compare: $\frac{15}{20}>\frac{14}{20}$, or

$$
\frac{3}{4}>\frac{7}{10}
$$

Order Fractions

Example 2: Order from least to greatest: $\frac{2}{3}, \frac{5}{8}, \frac{3}{4}$.
(1) Find the LCD of the denominators 3,8 , and 4:

$$
\begin{aligned}
3 & =3 \\
8 & =2 \times 2 \times 2 \\
4 & =2 \times 2 \\
\text { LCD } & =2 \times 2 \times 2 \times 3=24
\end{aligned}
$$

(2) Write equivalent fractions:

(3) Order:

$$
\begin{aligned}
& 15,16,18 \\
& \frac{15}{24}<\frac{16}{24}<\frac{18}{24}, \text { or } \frac{5}{8}<\frac{2}{3}<\frac{3}{4}
\end{aligned}
$$

Compare each pair of numbers using $<,=$, or $>$.

1. $\frac{2}{9} \square \frac{1}{3}$
2. $\frac{5}{6} \square \frac{7}{8}$
3. $\frac{7}{20} \square \frac{3}{10}$
4. $\frac{3}{6} \square \frac{4}{11}$
5. $\frac{2}{3} \square \frac{4}{6}$
6. $\frac{4}{8} \square \frac{2}{8}$
7. $\frac{3}{7} \square \frac{5}{8}$
8. $\frac{1}{3} \square \frac{3}{9}$
9. $\frac{1}{2} \square \frac{3}{7}$
10. $\frac{4}{5} \square \frac{7}{9}$
11. $\frac{2}{3} \square \frac{7}{10}$
12. $2 \frac{5}{9} \square 2 \frac{3}{5}$

Order each set of numbers from least to greatest.

13. $\frac{3}{4}, \frac{5}{8}, \frac{1}{2}$ \qquad 14. $\frac{5}{8}, \frac{5}{6}, \frac{2}{3}$ \qquad 15. $\frac{1}{2}, \frac{5}{12}, \frac{2}{3}$ \qquad
14. $\frac{3}{5}, \frac{2}{3}, \frac{7}{12}$
\qquad 17. $\frac{1}{2}, \frac{3}{5}, \frac{3}{8}$ \qquad 18. $\frac{7}{8}, \frac{3}{4}, \frac{13}{16}$ \qquad
15. Suzanne swims $1 \frac{1}{9}$ miles. Eugene swims $1 \frac{5}{12}$ miles. Who swims farther? Show your work.
\qquad Class \qquad Date \qquad

Review 27

Example 1: Write 0.320 as a fraction in simplest form.
(1) Read. "320 thousandths"
(2) Write. $\frac{320}{1,000}$
(3) Simplify. $\frac{320}{1,000}=\frac{320 \div 40}{1,000 \div 40}=\frac{8}{25}$

$$
0.320=\frac{8}{25}
$$

Example 2: Write 6.95 as a mixed number in simplest form.
(1) Read. " 6 and 95 hundredths"
(2) Write. $6 \frac{95}{100}$
(3) Simplify. $6 \frac{95}{100}=6 \frac{19}{20}$

$$
6.95=6 \frac{19}{20}
$$

Example 3: Write $\frac{1}{5}$ and $\frac{2}{3}$ as decimals.
Divide the numerator by the denominator. Insert zeros if needed.

$$
\begin{aligned}
& \frac{1}{5}=0.2 \quad \frac{2}{3}=0.666 \ldots=0 . \overline{6}
\end{aligned}
$$

0.2 is a terminating decimal because there is no remainder.
$0.666 \ldots$ is a repeating decimal because the remainder repeats. Write it as $0 . \overline{6}$.

Write each decimal as a fraction or mixed number in simplest form.

1. 0.8 \qquad
2. 0.55 \qquad
3. 1.25 \qquad
4. 1.75 \qquad
5. 3.375 \qquad
6. 0.125 \qquad
7. 1.32 \qquad
8. 0.34 \qquad
9. 0.084 \qquad
10. 0.006 \qquad 11. 0.65 \qquad
11. 4.95 \qquad

Write each fraction or mixed number as a decimal.
13. $\frac{13}{20}$ \qquad
14. $\frac{1}{6}$ \qquad
15. $\frac{7}{20}$ \qquad
16. $2 \frac{3}{5}$ \qquad
17. $\frac{19}{25}$ \qquad 18. $\frac{4}{9}$ \qquad
19. $\frac{7}{11}$ \qquad
20. $1 \frac{5}{8}$ \qquad
21. $1 \frac{2}{9}$ \qquad
22. $2 \frac{2}{8}$ \qquad
23. $\frac{1}{25}$ \qquad
24. $\frac{5}{12}$
\qquad

State whether each fraction is less than, equal to, or greater than $\mathbf{0 . 5 0}$.
Show your work.
25. $\frac{1}{3}$ \qquad 26. $\frac{20}{40}$ \qquad
27. $\frac{1}{6}$ \qquad
28. $\frac{7}{8}$ \qquad
29. $\frac{11}{13}$
30. $\frac{8}{20}$ \qquad
\qquad Class \qquad Date \qquad

Add: $\frac{1}{6}+\frac{3}{6}$
(1) Combine numerators over the denominator.
(2) Add numerators.
(3) Simplify, if possible.
$\frac{1}{6}+\frac{3}{6}=\frac{2}{3}$

$$
\begin{aligned}
\frac{1}{6}+\frac{3}{6} & =\frac{1+3}{6} \\
& =\frac{4}{6} \\
& =\frac{2}{3}
\end{aligned}
$$

Subtract: $\frac{7}{10}-\frac{2}{10}$
(1) Combine numerators over the denominator.

$$
\begin{aligned}
\frac{7}{10}-\frac{2}{10} & =\frac{7-2}{10} \\
& =\frac{5}{10} \\
& =\frac{1}{2}
\end{aligned}
$$

(2) Subtract numerators.
(3) Simplify, if possible.

Find each sum.

1. $\frac{1}{5}+\frac{3}{5}$ \qquad 2. $\frac{4}{6}+\frac{1}{6}$
2. $\frac{6}{10}+\frac{5}{10}$ \qquad
3. $\frac{3}{10}+\frac{2}{10}$ \qquad
4. $\frac{5}{8}+\frac{1}{8}$ \qquad
5. $\frac{3}{12}+\frac{3}{12}$
6. $\frac{6}{12}+\frac{3}{12}$ \qquad
7. $\frac{3}{8}+\frac{6}{8}$ \qquad

Find each difference.
10. $\frac{6}{8}-\frac{3}{8}$ \qquad
13. $\frac{7}{12}-\frac{1}{12}$ \qquad
11. $\frac{9}{10}-\frac{3}{10}$ \qquad
12. $\frac{3}{4}-\frac{1}{4}$ \qquad
14. $\frac{8}{10}-\frac{6}{10}$ \qquad 15. $\frac{4}{6}-\frac{2}{6}$ \qquad
18. $\frac{9}{10}-\frac{4}{10}$
17. $\frac{7}{12}-\frac{6}{12}$ \qquad

Name \qquad Class \qquad Date \qquad

Review 31

To add or subtract fractions with unlike denominators, you can use equivalent fractions.

Find $\frac{5}{6}+\frac{1}{2}$.
(1) Find the least common denominator of 6 and 2 .

The LCD is 6 .
(2) Write equivalent fractions using the LCD.

$$
\frac{5}{6}=\frac{5}{6} \quad \frac{1}{2}=\frac{1 \times 3}{2 \times 3}=\frac{3}{6}
$$

(3) Add. Write the sum

$$
\frac{5}{6}+\frac{1}{2}=\frac{5}{6}+\frac{3}{6}
$$

in simplest form.
$=\frac{5+3}{6}$
$=\frac{8}{6}$
$=\frac{4}{3}$
$=1 \frac{1}{3}$
$\frac{5}{6}+\frac{1}{2}=1 \frac{1}{3}$

Find $\frac{4}{5}-\frac{1}{3}$.
(1) Find the least common denominator of 5 and 3.

The LCD is 15 .
(2) Write equivalent fractions using the LCD.

$$
\frac{4}{5}=\frac{4 \times 3}{5 \times 3}=\frac{12}{15} \quad \frac{1}{3}=\frac{1 \times 5}{3 \times 5}=\frac{5}{15}
$$

(3) Subtract. Write the $\frac{4}{5}-\frac{1}{3}=\frac{12}{15}-\frac{5}{15}$ difference in simplest form.
$=\frac{12-5}{15}$

$$
=\frac{7}{15}
$$

$\frac{4}{5}-\frac{1}{3}=\frac{7}{15}$

Find each sum or difference.

1. $\frac{1}{2}+\frac{3}{4}$
2. $\frac{7}{8}-\frac{1}{2}$
3. $\frac{1}{2}+\frac{7}{10}$ \qquad
4. $\frac{15}{16}-\frac{1}{4}$ \qquad
5. $\frac{7}{8}-\frac{1}{4}$ \qquad
6. $\frac{7}{8}-\frac{3}{10}-$
7. $\frac{5}{8}+\frac{2}{3}$ \qquad
8. $\frac{15}{16}-\frac{1}{4}-\longrightarrow$
9. $\frac{11}{16}-\frac{5}{16}$
10. $\frac{7}{10}-\frac{3}{5}$ \qquad
11. $\frac{9}{10}+\frac{1}{2}$ \qquad
12. $\frac{3}{4}-\frac{5}{12}$ \qquad
13. $\frac{7}{12}-\frac{1}{3}$ \qquad
14. $\frac{3}{5}+\frac{1}{6}$ \qquad
15. $\frac{2}{6}+\frac{3}{4}$ \qquad
16. $\frac{3}{5}-\frac{1}{2}$ \qquad
17. $\frac{9}{10}-\frac{1}{2}$ \qquad
18. $\frac{1}{6}+\frac{1}{3}$ \qquad
19. $\frac{2}{3}+\frac{5}{9}$
20. $\frac{5}{8}+\frac{1}{4}$
21. $\frac{5}{6}+\frac{1}{3}$ \qquad
22. $\frac{1}{12}+\frac{1}{10}$ \qquad
23. $\frac{3}{8}-\frac{1}{3}$ \qquad
24. $\frac{1}{8}+\frac{1}{5}$ \qquad
25. $\frac{1}{10}+\frac{4}{5}$
\qquad
\qquad
\qquad

Some mixed numbers can be added mentally.
Find $5 \frac{1}{4}+2 \frac{1}{8}$.
(1) Add the whole numbers.

$$
5+2=7
$$

(2) Add the fractions.

$$
\frac{1}{4}+\frac{1}{8}=\frac{2}{8}+\frac{1}{8}=\frac{3}{8}
$$

(3) Combine the two parts.

$$
\begin{aligned}
& 7+\frac{3}{8}=7 \frac{3}{8} \\
& 5 \frac{1}{4}+2 \frac{1}{8}=7 \frac{3}{8}
\end{aligned}
$$

Or, you can follow these steps.
Find $4 \frac{4}{5}+2 \frac{9}{10}$.
(1) Write with a common denominator.

$$
4 \frac{4}{5}+2 \frac{9}{10}=4 \frac{8}{10}+2 \frac{9}{10}
$$

(2) Add the whole numbers. $=6 \frac{17}{10}$ Add the fractions.
(3) Rename $6 \frac{17}{10}$ as $7 \frac{7}{10}$. $=7 \frac{7}{10}$

$$
4 \frac{4}{5}+2 \frac{9}{10}=7 \frac{7}{10}
$$

Find each sum.

1. $4 \frac{4}{7}+1 \frac{1}{7}$
2. $1 \frac{1}{3}+3 \frac{1}{3}$
3. $2 \frac{1}{2}+4$
\qquad
\qquad
\qquad
4. $8 \frac{2}{5}+4 \frac{1}{10}$
5. $7 \frac{3}{4}+2 \frac{1}{8}$
6. $2 \frac{7}{10}+3 \frac{1}{5}$
7. $7 \frac{2}{9}+1 \frac{4}{9}$
8. $8 \frac{3}{14}+2 \frac{1}{7}$
9. $9 \frac{3}{8}+2 \frac{1}{2}$
10. $1 \frac{3}{4}+4 \frac{7}{8}$
11. $7 \frac{2}{3}+8 \frac{5}{6}$
12. $1 \frac{2}{5}+9 \frac{2}{3}$
13. $6 \frac{3}{4}+8 \frac{4}{5}$
14. $3 \frac{2}{3}+5 \frac{5}{6}$
15. $4 \frac{2}{5}+6 \frac{7}{10}$
16. $6+3 \frac{2}{5}$
17. $9 \frac{1}{6}+1 \frac{1}{3}$
18. $8 \frac{1}{16}+4 \frac{5}{8}$
\qquad Class \qquad Date \qquad
Review 33

Some mixed numbers can be subtracted mentally.
Find $5 \frac{2}{3}-2 \frac{1}{6}$.
(1) Subtract the whole numbers.

$$
5-2=3
$$

(2) Then, subtract the fractions.

$$
\frac{2}{3}-\frac{1}{6}=\frac{4}{6}-\frac{1}{6}=\frac{3}{6}=\frac{1}{2}
$$

(3) Combine the two parts.

$$
\begin{aligned}
& 3+\frac{1}{2}=3 \frac{1}{2} \\
5 \frac{2}{3}-2 \frac{1}{6}= & 3 \frac{1}{2}
\end{aligned}
$$

Sometimes you must rename the first fraction before subtracting.
Find $6 \frac{1}{2}-2 \frac{3}{4}$.

(1) Write with a common denominator.

$$
6 \frac{1}{2}-2 \frac{3}{4}=6 \frac{2}{4}-2 \frac{3}{4}
$$

(2) Rename $6 \frac{2}{4}$. $=5 \frac{6}{4}-2 \frac{3}{4}$
(3) Subtract the whole numbers. $=3 \frac{3}{4}$

Then, subtract the fractions.
Simplify, if necessary.
$6 \frac{1}{2}-2 \frac{3}{4}=3 \frac{3}{4}$

Find each difference.

1. $7 \frac{7}{10}-2 \frac{3}{10}$
2. $3 \frac{3}{4}-1 \frac{1}{2}$
3. $6 \frac{2}{3}-2 \frac{1}{6}$
4. $9 \frac{7}{8}-7 \frac{3}{4}$
© Pearson Education, Inc. All rights reserved.
5. $12 \frac{1}{3}-9 \frac{2}{3}$
\qquad
6. $10 \frac{2}{3}-7 \frac{5}{6}$
\qquad
7. $6 \frac{1}{8}-3 \frac{1}{16}$
\qquad
8. $7 \frac{2}{5}-2 \frac{1}{4}$
\qquad
9. $14 \frac{1}{3}-8 \frac{1}{4}$
10. $8 \frac{1}{2}-3 \frac{1}{4}$
11. $6 \frac{5}{8}-2 \frac{3}{4}$
12. $5 \frac{7}{16}-1 \frac{1}{2}$
13. $9 \frac{5}{12}-5 \frac{3}{4}$
14. $15 \frac{5}{12}-8 \frac{1}{3}$
15. $4 \frac{1}{10}-2 \frac{4}{5}$
\qquad Class \qquad Date \qquad

You can model $\frac{2}{3}$ of $\frac{1}{4}$.
(1) Show $\frac{1}{4}$.

(2) Divide into thirds.

(3) Shade $\frac{2}{3}$ of the $\frac{1}{4}$.

Write the multiplication problem each model represents.

1.

2.

Find each product.
3. $\frac{1}{9}$ of $\frac{2}{3}$
4. $\frac{2}{7} \times \frac{1}{2}$
5. $\frac{5}{8} \cdot 6$
6. $\frac{3}{4} \cdot \frac{4}{7}$
7. $\frac{7}{10}$ of $\frac{1}{3}$
8. $\frac{5}{6} \times \frac{3}{4}$
9. $\frac{3}{8}$ of $\frac{7}{10}$
10. $\frac{3}{4} \times \frac{1}{9}$
11. $\frac{2}{9}$ of 8
12. $\frac{1}{3}$ of 2
13. $\frac{5}{9}$ of 4
14. $\frac{3}{4} \cdot \frac{2}{5}$
\qquad
\qquad
15. Every day you eat $\frac{1}{4}$ cup of cereal. Your brother eats 5 times as much. How many cups of cereal does your brother eat?
\qquad
\qquad Date \qquad

$$
\begin{array}{l|c}
2 \frac{1}{7} \times 2 \frac{2}{5} & \text { Example 2: Multiply: } \\
\frac{2}{3} \times 5 \frac{1}{4} \\
\frac{15}{7} \times \frac{12}{5} & \frac{2}{3} \times \frac{21}{4} \\
{ }^{3} \frac{15}{7} \times \frac{12}{8}_{1} & 1 \frac{2}{\frac{2}{3}} \times \frac{21^{7}}{4_{2}} \\
\frac{36}{7} \leftarrow \mathbf{3} \times \mathbf{1 2} & \frac{7}{2} \leftarrow \mathbf{1} \times \mathbf{1} \times 2 \\
5 \frac{1}{7} & 3 \frac{1}{2} \\
2 \frac{1}{7} \times 2 \frac{2}{5}=5 \frac{1}{7} & \frac{2}{3} \times 5 \frac{1}{4}=3 \frac{1}{2}
\end{array}
$$

Example 1: Multiply:
(1) Change to improper fractions.
(2) Simplify.
(3) Multiply.
(4) Simplify.

Find each product.

1. $1 \frac{1}{4} \times 2 \frac{2}{3}$
2. $2 \frac{2}{5} \times 4 \frac{1}{2}$
3. $3 \frac{1}{7} \times 2 \frac{4}{5}$
4. $\frac{1}{5} \times 2 \frac{7}{9}$
5. $12 \frac{1}{2} \times 2 \frac{2}{5}$
\qquad
\qquad
\qquad
\qquad
6. $2 \frac{1}{8} \times 2 \frac{2}{3}$
7. $5 \frac{1}{3} \times 1 \frac{7}{8}$
8. $\frac{1}{2} \times 3 \frac{3}{5}$
9. $2 \frac{1}{7} \times 4 \frac{2}{3}$
10. $1 \frac{1}{2} \times 2 \frac{6}{7}$
\qquad
\qquad
\qquad
\qquad
\qquad
11. $1 \frac{5}{6} \times 2 \frac{1}{4}$
12. $5 \frac{1}{4} \times 2 \frac{2}{7}$
13. $\frac{1}{4} \times 1 \frac{3}{5}$
14. $\frac{1}{7} \times 1 \frac{3}{4}$
15. $\frac{2}{9} \times 2 \frac{1}{4}$
16. $3 \frac{1}{3} \times 3 \frac{3}{10}$
17. $1 \frac{2}{3} \times 3 \frac{1}{2}$
18. $1 \frac{2}{5} \times 4 \frac{1}{3}$
19. $\frac{1}{7} \times 1 \frac{3}{5}$
20. $\frac{3}{5} \times 8 \frac{1}{2}$
\qquad
\qquad
\qquad
\qquad
\qquad
21. $2 \frac{6}{7} \times 1 \frac{2}{5}$
22. $3 \frac{2}{5} \times 2 \frac{1}{2}$
23. $1 \frac{2}{3} \times 7 \frac{1}{2}$
24. $1 \frac{3}{10} \times 2 \frac{6}{7}$
25. $\frac{3}{16} \times 1 \frac{1}{7}$

Solve.

26. Estimate the area of a window pane that has dimensions $6 \frac{1}{8}$ by $11 \frac{1}{4}$ inches.
27. A hamster is $2 \frac{1}{2}$ inches long. A rabbit is $3 \frac{1}{2}$ times as long as the hamster. How long is the rabbit?
\qquad
\qquad
\qquad

Review 39

Find $8 \div \frac{4}{5}$.
(1) The reciprocal of $\frac{4}{5}$ is $\frac{5}{4}$.

(2) Multiply 8 by the reciprocal.
$8 \div \frac{4}{5}=8 \times \frac{5}{4}=\frac{2}{1} \times \frac{5}{A_{1}}=\frac{2 \times 5}{1 \times 1}=10$
$8 \div \frac{4}{5}=10$

Find $\frac{4}{9} \div \frac{8}{15}$.
(1) The reciprocal of $\frac{8}{15}$ is $\frac{15}{8}$.

(2) Multiply $\frac{4}{9}$ by the reciprocal.
$\frac{4}{9} \div \frac{8}{15}=\frac{4}{9} \times \frac{15}{8}=\frac{1}{3} \frac{4}{9} \times \frac{15}{8}{ }_{8}^{5}=\frac{1 \times 5}{3 \times 2}=\frac{5}{6}$
$\frac{4}{9} \div \frac{8}{15}=\frac{5}{6}$

Write the reciprocal of each number.

1. $\frac{1}{4}$ \qquad
2. $\frac{5}{3}$
3. $\frac{1}{20}$ \qquad
4. $\frac{8}{9}$ \qquad
5. 14 \qquad
6. 18 \qquad
7. $\frac{5}{9}$ \qquad
8. $\frac{3}{11}$ \qquad
9. $\frac{9}{7}$ \qquad
10. $\frac{11}{12}$ \qquad
11. $\frac{2}{7}$ \qquad
12. $\frac{3}{15}$ \qquad

Find each quotient.
13. $2 \div \frac{2}{3}$ \qquad 14. $7 \div \frac{7}{8}$ \qquad 15. $9 \div \frac{3}{4}$
16. $6 \div \frac{2}{5}$ \qquad 17. $5 \div \frac{2}{3}$ \qquad
18. $14 \div \frac{5}{6}$ \qquad
19. $\frac{4}{5} \div \frac{4}{7}$ \qquad
20. $\frac{7}{8} \div \frac{7}{9}$ \qquad
21. $\frac{4}{7} \div 2$ \qquad
22. $\frac{7}{8} \div \frac{2}{3}$ \qquad 23. $\frac{1}{2} \div 4$ \qquad
24. $\frac{2}{5} \div \frac{3}{4}$ \qquad
25. $\frac{9}{10} \div 3$ \qquad 26. $\frac{3}{5} \div 5$ \qquad 27. $\frac{5}{8} \div 10$ \qquad
28. $\frac{3}{4} \div \frac{7}{8}$ \qquad
29. $\frac{5}{6} \div \frac{1}{3}$ \qquad
30. $\frac{11}{12} \div \frac{3}{4}$
\qquad Class \qquad Date \qquad

A ratio is a comparison of two numbers by division. Each number in a ratio is called a term. You can write a ratio in three different ways. For example, the ratio 4 to 5 can be written:

4 to 5
4:5
$\frac{4}{5}$

Equal ratios name the same number. They have the same simplest form.

- To find equal ratios, multiply or divide both the numerator and denominator of a ratio by the same number.
Find a ratio equal to $\frac{4}{7}$.

$$
\begin{aligned}
& \frac{4}{7}=\frac{4 \times 2}{7 \times 2}=\frac{8}{14} \\
& \frac{8}{14} \text { is equal to } \frac{4}{7} .
\end{aligned}
$$

Find the simplest form for the ratio $\frac{16}{20}$.

$$
\frac{16}{20}=\frac{16 \div 4}{20 \div 4}=\frac{4}{5}
$$

$\frac{4}{5}$ is the simplest form for $\frac{16}{20}$.

Write three different ratios equal to each ratio.

1. $\frac{2}{5}$
2. $1: 3$
3. 3 to 4
4. $5: 8$
5. 2 to 7
6. $\frac{1}{5}$
7. 12 to 20
8. $6: 16$

Write each ratio in simplest form.
9. $32: 16$
10. $\frac{14}{24}$
11. $\frac{36}{50}$
12. $60: 25$
13. $\frac{25}{40}$
14. $60: 180$
15. $\frac{75}{120}$
16. $80: 20$

Find the value that makes the ratios equal.
17. $3: 4$, ? $: 16$
18. 20 to 25,40 to ?
19. 9 to 12,81 to ?
20. $7: 10$, ? : 100
21. 1 to 8, ? to 24
22. $30: 120,90:$?
\qquad
23. $5: 100,25: ?$
24. $\frac{7}{56}, \frac{?}{280}$
25. $\frac{6}{12}, \frac{36}{?}$
\qquad
\qquad Date \qquad

A rate is a ratio that compares quantities that are measured in different units. Suppose a sprinter runs 100 yards in 10 seconds. $\frac{100 \mathrm{yd}}{10 \mathrm{~s}}$ compares yards to seconds.
A unit rate compares a quantity to one unit of another quantity.
You can find the unit rate by dividing by the denominator.

$$
\frac{100 \mathrm{yd} \div 10}{10 \mathrm{~s} \div 10}=\frac{10 \mathrm{yd}}{1 \mathrm{~s}}
$$

10 yards per second is the sprinter's unit rate.

Find the unit rate for each situation.

1. $\$ 70$ for 10 shirts
2. $\$ 150$ for 3 games
3. $\$ 120$ for 6 shirts
4. $\$ 45$ for 5 boxes
5. $\$ 56$ for 7 hours
6. $\$ 100$ for 5 rackets
\qquad

Write the unit rate as a ratio. Then find an equal ratio.

10. The cost is $\$ 4.25$ for 1 item. Find the cost of 5 items.
11. There are 7 cheerleaders in a squad. Find the number of cheerleaders on 12 squads.
12. The cost if $\$ 10.10$ for 1 item. Find the cost of 10 items.
13. There are 2.54 centimeters per one inch. Find the number of centimeters in 5 inches.
14. The cost is $\$ 8.50$ for 1 item. Find the cost of 3 items.

For Exercises 15-20, tell which unit rate is greater.
15. Dillan scores 24 points in 2 games. Eric scores 40 points in 4 games.
16. A fern grows 4 inches in 2 months. A tree grows 6 inches in 4 months.
17. Tyler jogs 4 miles in 32 minutes. Joey jogs 2 miles in 18 minutes.
18. Dixie drinks 2 cups of water in 5 minutes. Dale drinks 10 cups of water in 12 minutes.
\qquad
\qquad
\qquad
Review 50

- To write a percent as a fraction in simplest form, first write a fraction with a denominator of 100 . Then simplify.

$$
74 \%=\frac{74}{100}=\frac{37}{50}
$$

- To write a percent as a decimal, first write a fraction with a denominator of 100 . Then write the decimal.

$$
74 \%=\frac{74}{100}=0.74
$$

- To write a decimal as a percent, move the decimal point two places to the right.

$$
0.23=23 \%
$$

Here are two ways to write a fraction as a percent.

- Write an equivalent fraction with a denominator of 100 , then write the percent.

$$
\frac{3}{20}=\frac{15}{100}=15 \%
$$

- Divide the numerator by the denominator.

$$
\begin{aligned}
& \begin{aligned}
& \frac{3}{8}= \\
& \frac{0.375}{8.000}=37.5 \% \\
& \frac{-24}{60} \quad \begin{array}{l}
\text { Move the decimal point }
\end{array} \\
& \frac{-56}{40} \\
& \frac{-40}{0} \\
& \text { two places to the right. }
\end{aligned} \\
& \text { So } \frac{3}{8}= 37.5 \% .
\end{aligned}
$$

Write each percent as a decimal and as a fraction in simplest form.

1. 30%
2. 14%
3. 16%
4. 5%
5. 92%
6. 80%
7. 21%
8. 38%

Write each fraction or decimal as a percent.

9. $\frac{17}{25}$
10. 0.85
11. 0.16
12. $\frac{5}{40}$
\qquad
13. $\frac{1}{10}$
14. 0.64
15. 0.008
16. $\frac{7}{200}$
17. 0.64
\qquad
18. $\frac{9}{20}$
19. $\frac{6}{15}$
20. 0.32
21. 0.07
\qquad
\qquad
22. $\frac{13}{100}$
23. $\frac{45}{50}$
24. 0.010
25. 0.60
\qquad

- The mean of a set of data is the sum of the values divided by the number of data items.

$$
\begin{aligned}
& 74+77+80+81+85+87+94+94=672 \\
& 672 \div 8=84
\end{aligned}
$$

The mean math test grade is 84 .

- The median of a data set is the middle value when the data are arranged in numerical order. When the grades are arranged in order from least to greatest, there are two middle numbers.
$74,77,80,81,85,87,94,94$
To find the median, add the two middle numbers and divide the total by 2 .
$81+85=166$
$166 \div 2=83$

Math Test Grades	
Sharon	81
Rashid	94
Durrin	77
Nicole	80
Terry	74
Mei-lin	94
Kevin	87
Carlos	85

The median grade is 83 .

- The mode of a data set is the item in the data set that appears most often. For this data, 94 is the mode.

Find the mean of each data set.

1. $8,6,5,9,7,13$
2. $104,126,128,100,97$
\qquad
Find the median of each data set.
3. $5,4,7,9,8$
\qquad
4. $46,38,22,48,61$
5. $12,16,19,14,14,18$
6. $9,19,21,13$
\qquad
7. $60,57,53,78,44,51$
\qquad

Find the mode of each data set.
13. $3,4,5,5,3,5,4,2$
16. $33,35,34,33,35,33$
14. $1,2,1,1,2,2,3,1$
\qquad
15. $6,8,3,8,3,9,3$
\qquad Class \qquad Date \qquad

Review 73

Perimeter

The perimeter of a figure is the sum of the lengths of its sides. Opposite sides of a rectangle are equal. To find the perimeter, add the 2 lengths (ℓ) and the 2 widths (w).

$$
P=\ell+\ell+w+w \text { or } P=2 \ell+2 w
$$

Find the perimeter.

$$
\begin{aligned}
P & =2 \ell+2 w \\
& =2(14)+2(9) \\
& =28+18=46
\end{aligned}
$$

The perimeter is 46 centimeters.

Area

The area of a figure is the number of square units needed to cover the figure. To find the area of a rectangle, multiply the length (ℓ) and the width (w).

$$
A=\ell \times w
$$

Find the area.

$$
\begin{aligned}
A & =\ell \times w \\
& =6 \times 5 \\
& =30
\end{aligned}
$$

The area is 30 square meters.

Estimate the area of each figure. Each square represents 1 square inch.

1.

2.

3.

Find the perimeter and area of each rectangle or square.
4. $\ell=12 \mathrm{~cm}, w=2 \mathrm{~cm}$
5. $\ell=9 \mathrm{ft}, w=7.5 \mathrm{ft}$
7. $\ell=5.5 \mathrm{in} ., w=5.5 \mathrm{in}$.
8. $\ell=6.2 \mathrm{in} ., w=3.4 \mathrm{in}$.
10. $\ell=8 \mathrm{~cm}, w=8 \mathrm{~cm}$
11. $\ell=10.5 \mathrm{~m}, w=5.2 \mathrm{~m}$
\qquad
\qquad
12. $\ell=22$ in., $w=9 \mathrm{in}$.
13. What is the area of a square with a perimeter of 60 meters?
\qquad
\qquad Date \qquad

Parallelogram

To find the area of a parallelogram, multiply base times height.

$$
A=b \times h
$$

Find the area of the parallelogram.

$$
\begin{aligned}
A & =b \times h \\
& =3 \times 6 \\
& =18
\end{aligned}
$$

Triangle

The area of a triangle is $\frac{1}{2}$ times the base times the height.

$$
A=\frac{1}{2} b \times h
$$

Find the area of the triangle.

$$
\begin{aligned}
A & =\frac{1}{2} \times b \times h \\
& =\frac{1}{2} \times 3 \times 6 \\
& =9
\end{aligned}
$$

The area is 9 square centimeters.

Find the area of each parallelogram.

1. $b=6 \mathrm{ft}, h=8 \mathrm{ft}$
2. $b=12 \mathrm{in}, h=9 \mathrm{in}$.
3. $b=6 \mathrm{yd}, h=12 \mathrm{yd}$
4. $b=2.8$ in., $h=3.4 \mathrm{in}$.
5. $b=31 \mathrm{yd}, h=19 \mathrm{yd}$
6. $b=4.5 \mathrm{~m}, h=4.5 \mathrm{~m}$
7. $b=15 \mathrm{~cm}, h=7 \mathrm{~cm}$
8. $b=8.3 \mathrm{ft}, h=11.7 \mathrm{ft}$
9. $b=14.4 \mathrm{~m}, h=6.5 \mathrm{~m}$

Find the area of each triangle.
10. $b=8 \mathrm{~cm}, h=14 \mathrm{~cm}$
11. $b=7 \mathrm{in} ., h=18 \mathrm{in}$.
12. $b=11 \mathrm{~m}, h=4.6 \mathrm{~m}$
13. $b=6.4 \mathrm{ft}, h=3.5 \mathrm{ft}$
14. $b=104 \mathrm{in}$., $h=55 \mathrm{in}$.
15. $b=5.9 \mathrm{~cm}, h=4.2 \mathrm{~cm}$
\qquad
16. $b=1.7 \mathrm{~m}, h=3.3 \mathrm{~m}$
17. $b=5.8 \mathrm{yd}, h=5.8 \mathrm{yd}$
18. $b=8.6$ in., $h=0.8 \mathrm{in}$.
\qquad
\qquad
\qquad

Review 81
The numbers . . $-3,-2,-1,0,+1,+2,+3, \ldots$ are integers.
Integers are the set of positive whole numbers, their opposites, and 0.

The absolute value of a number is its distance from 0 on a number line. $|-4|=4$. Opposite integers, like -4 and 4 , are the same distance from 0 .

Compare -2 and 1.
For two integers on a number line, the greater integer is farther to the right.
(1) Locate -2 and 1 on the number line.

(2) Find that 1 is farther to the right.
(3) Write $1>-2(1$ is greater than -2$)$, or $-2<1$ (-2 is less than 1 .)

Name the opposite of each integer.

1. 7 \qquad 2. -212 \qquad 3. 49 \qquad
2. 1,991 \qquad
3. -78 \qquad
4. 16 \qquad

Compare using $<$ or $>$.

7. 6 \square 3
8. $2 \square 8$
9. $-2 \square 2$
10. $9 \square-9$
11. 0 \square 5
12. -9 \square
13. 0 \square 10
14. 7 \square -9
15. -5 \square -1
16. 6

17. $-5 \square-2$
18. -12 \square
19. 8 \square -3
20. -1 \square -2
21. -5 \square
22. -3

Find each absolute value.
23. $|-2|$
\qquad
26. $|8|$
\qquad
29. $|16|$
24. $|-100|$
27. $|-25|$
30. $|12|$
25. $|-16|$
\qquad
28. $|-250|$
31. $|75|$
\qquad Class \qquad Date \qquad

Example: Graph $(2,-4)$.

- 2 is the x-coordinate. It tells how far to move left or right from the origin.
- -4 is the y-coordinate. It tells how far to move up or down from the origin.

Find the coordinates of point A.
(1) Start at the origin.
(2) How far left or right? 3 left The x-coordinate is -3 .
(3) How far up or down? 5 up The y-coordinate is 5 .

The coordinates of point A are $(-3,5)$.

Graph each point in a coordinate plane.

1. $B(1,6)$
2. $C(-4,-3)$
3. $D(0,5)$
4. $E(-2,2)$
5. $F(-1,-5)$
6. $G(6,-4)$
7. $H(5,5)$
8. $J(4,0)$
9. $K(-4,-4)$
10. $L(2,-3)$
11. $M(-2,0)$
12. $N(5,-1)$
13. $P(0,-3)$
14. $Q(-4,0)$

Find the coordinates of each point.

15. R \qquad 16. S \qquad
17. T \qquad 18. U \qquad

Look at the coordinate grid above.

19. If you travel 7 units down from S, at which point will you be located?
20. If you travel 4 units right from T and 2 units down, at which point will you be located?
